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A B S T R A C T

Mercury pollution of water bodies exerts significant human and ecosystem health impacts due to high toxicity.
Relatively high levels of mercury have been detected in the Amazon River and its tributaries and associated
lakes. The study employed a Bayesian Network approach to investigate the contribution from geogenic sources
to mercury pollution of lakes in the Madeira River basin, which is the largest tributary of the Amazon River. It
was found that the source indicators of naturally occurring mercury have both, positive and negative re-
lationships with mercury in lake sediments. Although the positive relationships indicated the influence of
geological and soil formations, the negative relationships implied that the use of mercury amalgam for gold
extraction in artisanal and small-scale mining (ASM), which is the primary anthropogenic source of mercury,
also contribute to mercury in Amazon tributaries. This was further evident as mercury concentrations in lake
sediments were found to be significantly higher than those in the surrounding rocks. However, potential an-
thropogenic mercury was attributed to historical inputs from gold mining due to the recent decline of ASM
mining practice in the region.

1. Introduction

Amazon, as the world's most biodiverse system of tropical rain-
forests, is the home to a large number of species of freshwater flora and
fauna (Castello et al., 2013; Junk et al., 2007). However, this water
environment is subject to significant risks due to the presence of a range
of toxicants of natural and anthropogenic origin, and one of the major
concerns is mercury (Hg) pollution of Amazon River tributaries. As a
highly toxic pollutant, Hg can pose risks to human health once ingested
through contaminated fish.

In fact, Amazon waters can be polluted by Hg due to: (1) geogenic
factors such as transport of naturally occurring Hg in soil into water-
ways and atmospheric emissions from Andes volcanic eruptions
(Bonotto and Vergotti, 2015); and (2) use of Hg amalgam for gold ex-
traction from ore in artisanal and small-scale mining (ASM) (Pacyna
et al., 2010; UNEP_Chemicals_Branch, 2008). However, it is important
to note that ASM gold mining has decreased in intensity over the past
years (Bastos et al., 2006). Therefore, it can be hypothesised that the

current Hg content in river waters and sediments could be sourced from
naturally occurring Hg as well as historical inputs from previous ASM
gold mining.

The investigation discussed in this paper characterised the potential
degradation of Amazon ecosystem due to geogenic Hg inputs, and
thereby identified any potential contributions from anthropogenic
sources of Hg. This is due to the practical constraints in the Amazon
region to collect reliable data on ASM gold mining activities, as a
consequence of the wilderness, difficulty in terrestrial access and zones
of conflicts with indigenous people, among others. The study adopted
Bayesian Networks (BNs), which is a novel approach in the context of
environmental systems modelling. BNs are a graphical modelling ap-
proach embedded with straightforward interpretability, and has been
used for understanding complex environmental systems. Past studies
include, prediction of species abundance as a function of habitat
characteristics (Howes et al., 2010), assessment of influential factors in
the occurrence of cyanobacterial blooms in tropical lakes (Rigosi et al.,
2015), modelling the impact of vehicular traffic on the build-up of
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hydrocarbons on urban roads (Li et al., 2017), evaluation of the influ-
ence of land use change on urban receiving waters (Wijesiri et al.,
2018a), assessment of human health risks in developing countries due
to poor urban water quality (Wijesiri et al., 2018b), and comparison of
the impact of urbanisation in different geographical regions on storm-
water pollution (Wijesiri et al., 2018c).

Further, BNs have emerged as an effective modelling approach as it
facilitates the utilisation of expert elicited information and historical
data for developing the model structure. It enhances the handling of
sparse data and the derivation of scientifically robust inferences
(Stefanini, 2008). However, it is also important to note that expert
elicitation needs to be performed in a way that it does not lead to in-
accurate discretisation of variables (limits the capture of the char-
acteristics of observed data) and derivation of less reliable prior in-
formation (Uusitalo, 2007).

Accordingly, the main objective of the current study was to develop
a BN model to assess the contribution from geogenic sources to Hg in
the sediments of Amazon lakes. The outcomes of the research study are
expected to contribute to the formulation of effective planning and
management strategies to minimise the impact of Hg, and thereby
safeguard the Amazon aquatic ecosystem.

2. Materials and methods

2.1. Study sites

The study was based in the Madeira River basin located in Rondônia
State, Brazil. As shown in Fig. S1 in the Supplementary information,
Madeira is the largest of several basins that comprise the system of
Amazon rainforests. The sediment sampling sites were located in nine
lakes (0.6–5 km in length and 0.3–1.2 km in width) as shown in Fig. 1,
and their main features have been detailed in Bonotto and Vergotti
(2015). Further, the population in the surrounding area of the lakes
varies from 120 inhabitants to 2000 inhabitants. The major economic
activities of the population include fishing, agriculture (rice, corn,
manioc, banana, coffee, coconut and water melon) and extractive in-
dustries (chestnut and açaí).

In addition to sediments from the nine lakes, a total of six rock
samples were collected at Teotônio and Santo Antônio waterfalls (Fig.
S2 and Table S1 in the Supplementary information). The petrographic,
geochemical, and geochronological aspects of the rock formations were

characterised by Payolla (1994). The major lithologies consisted of
coarse-grained igneous rocks comprising granites, syenites and mon-
zonites.

2.2. Sample collection and laboratory analysis

The core sediment samples were collected over a maximum depth
range of 20–80 cm from the lake bed by driving a 1m long and 7 cm
diameter PVC tube attached to an iron outliner. Samples were collected
approximately in the central area of each lake, and each sample was cut
into 5 cm thick slices and transferred into polyethylene bags, stored in
iceboxes, and then transported to the laboratory. The maximum depth
(and respective number of slices) of core sediments collected at each
lake was: Samuel – 20 cm (4); Paca – 25 cm (5); Demarcação – 35 cm
(7); Brasileira – 55 cm (11); Conceição – 50 cm (10); Araçá – 80 cm
(16); Tucunaré – 65 cm (13); Santa Catarina – 50 cm (10); and Nazaré –
25 cm (5). Quality Assurance and Quality Control procedures were
followed during sample handling and storage (Azcue et al., 1994).

The sediment samples collected were analysed for elemental Hg and
indicators of geogenic Hg, namely, major oxides (Al2O3, Fe2O3, TiO2,
SiO2, MgO, CaO, Na2O and K2O) and organic carbon. The selected
oxides are typical parameters analysed to perform geochemical balance
of the composition of rocks, soils and sediments (Faure, 1991) and
largely influence Hg transport through soil, while organic carbon con-
tent indicates the likelihood of forming Hg-organic complexes (Belzile
et al., 2008; Brigham et al., 2009; Gu et al., 2011).

To determine the concentration of elemental Hg in lake sediments,
the samples were first digested, and then analysed using atomic ab-
sorption spectrometry with cold vapour generation by following the
Method 7471B (USEPA, 2007). For the rock samples collected, only the
elemental Hg was analysed. The rock fragments were initially crushed
using jaw crushers in two stages, first, from 5 cm to 1.5 cm size, and
then 1.5 cm to 3–5mm. Subsequently, crushed rock samples were fur-
ther size reduced to< 400 µm in an oscillating mill and submitted to
the same analytical procedure adopted for Hg determination in the lake
sediments.

The concentrations of oxides were determined using X-ray
Fluorescence (XRF) method as described by Beckhoff et al. (2007).
Total Organic Carbon (TOC) in sediments was determined using spec-
trophotometry as described by Hach (1992).

Fig. 1. Locations of lakes (adapted from Bonotto and Vergotti, 2015).
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2.3. Bayesian network modelling approach

BN modelling builds relationships between random variables using
Structure Learning Algorithms to learn the model structure. A typical
structure of a BN model is shown in Fig. S3 in the Supplementary in-
formation. Subsequently, the model parameters are commonly esti-
mated based on Maximum Likelihood Estimates (Ben‐Gal, 2007; Scutari,
2009; Uusitalo, 2007). As can be seen in Fig. S3, given a set of random
variables = …V X X X{ , , , }1 2 6 , the BN structure defines a factorisation of
the global probability distribution of V (i.e. joint probability distribu-
tion) into local probability distributions of individual variables. This
factorisation is based on the Markov Property of BNs (Eqs. (1) and (2))
which states that any given variable depends on its parent variables
(Korb and Nicholson, 2010).

∏ ∏… =
=

P X X X P X X( , , , ) ( | ),for discrete variables
i

i i1 2 6
1

6

(1)

∏ ∏… =
=

f X X X f X X( , , , ) ( | ),for continuous variables
i

i i1 2 6
1

6

(2)

In this study, a BN was proposed to investigate the relationships
between concentration of Hg in lake sediments in Madeira river basin
and indicators of the origin of geogenic Hg (as discussed in Section 2.2)
and sediment depth. The predictive analysis was conducted by fitting
the probability density functions corresponding to the proposed BN
model with observed data of model variables (i.e. Hg concentration in
sediments, geogenic source indicators, and sediment depth) using the
bnlearn R statistical computing package. Hence, the model parameters
were estimated in the form of conditional regression coefficients, such
that the difference between observed and predicted values is mini-
mised. The estimated parameters were then used to predict the con-
centrations of Hg in lake sediments. The type (positive/negative) and
the magnitude of estimated parameters quantitatively informed the
contribution from geogenic sources to Hg pollution of the aquatic en-
vironment.

3. Results and discussion

3.1. Development of the BN model

Fig. 2 depicts the structure of the proposed BN that describes re-
lationships between Hg concentrations in lake sediments at different
depths and geogenic source indicators. It is important to note that the
predictive analysis undertaken was conditional on the proposed model
structure. However, this structure can be modified as new knowledge

become available, in order to enhance the replication of the system
being modelled, and thereby to improve the model prediction perfor-
mance (Uusitalo, 2007). Table 1 shows estimated model parameters,
and it can be noted from the variation in predicted values against ob-
served data and residual plots (Fig. 3), that the prediction performance
of the BN model is satisfactory.

3.2. Impact of geogenic Hg on the degradation of lakes

In order to evaluate the relationships between Hg concentrations
and geogenic source indicators, leave-one-out cross validation was
undertaken using R linear model – lm() function. It was noted that there
exists statistically significant linear relationships between Hg con-
centration in lake sediments and CaO (p-value = 0.000926 at 0.01
significance level), Fe2O3 (p-value = 0.0119 at 0.05 significance level)
and K2O (p-value = 0.0202 at 0.05 significance level). This implies that
it is unlikely that Hg concentrations are not directly related (positively
or negatively) to CaO, Fe2O3 and K2O concentrations in sediments,
compared to other geogenic source indicators.

Moreover, as evident from Table 1, Hg concentrations in lake se-
diments show positive relationships (i.e. positive conditional regression
coefficients) with Al2O3, CaO, MgO and organic carbon. On the other
hand, as evident from the negative relationships (i.e. positive condi-
tional regression coefficients), low Hg concentrations are expected
where there are high Fe2O3, K2O, Na2O, SiO2 and TiO2 concentrations
in sediments. Further, Hg concentrations have negative relationships
also with sediment depth. However, given that sediment depth shows
the weakest negative relationship and the current study accounted for
sediments of 0–20 cm depth, it can be concluded that the variation in
Hg concentrations with depth is minimal compared to that in response
to other factors.

In order to further confirm the relationships identified between Hg
in sediments and geogenic source indicators, it was important to eval-
uate geological and soil formations around the lakes studied. Fig. S4 in
the Supplementary information shows the geological map of Rondônia
State. Accordingly, the study area largely comprises of alluviam-collu-
viam sediment formations, lacustrine deposits and laterites (containing
Al and Fe oxides). The area also has small patches of amphibole-biotite
formations which contain Al, Fe, K, Mg and Si. Further, according to the
soil map of Rondônia State (Fig. S5 in the Supplementary information),
the study area has red-yellow argisol soils (includes majority of soils
previously classified as podzolic soils) and red and yellow latosol soils,
which are rich in organic carbon and Fe and Al oxides (Benedetti et al.,
2011). Accordingly, some of the major positive relationships revealed
by the BN model (Al2O3 and MgO) could be attributed to the presence
of geogenic formations that contain Al and Mg. However, Hg con-
centrations in lake sediments also show negative relationships with
geogenic source indicators, in particular, Fe2O3 and K2O, which are
abundant in the typical minerals and soils in the study area. This im-
plies that sources other than natural sources, potentially gold mining
activities also contribute to Hg in lake sediments.

In fact, although the geological formations in all the nine lakes are
similar, the predictions of Hg concentrations in sediments shown in
Fig. 4 are particularly significant in the case of Samuel, Paca, De-
marcação and Brasileira lakes. Moreover, it was also found that the Hg
concentrations in the surrounding rock formations (Table S1 in the
Supplementary information) are significantly lower than Hg con-
centrations in lake sediments (p-value=2.46×10−12 at 0.01 sig-
nificance level). This implies that gold mining activities could poten-
tially release Hg into these lakes. In recent years, with gold mining in
the Madeira River basin decreasing in intensity (Bastos et al., 2006), the
sediment contamination is attributed to historical inputs. Thus, it could
be concluded that the Amazon tributaries continue to be contaminated
by Hg despite the diminishing anthropogenic inputs. Accordingly, strict
regulations need to be imposed on the use of hazardous materials in
mining in order to protect the Amazon waters.

Fig. 2. Structure of the Bayesian Network (BN) for visualising the relationships
between Hg in lake sediments and geogenic source indicators.
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4. Conclusions

This study employed BN modelling to characterise the contribution
of geogenic and anthropogenic sources of Hg in Amazon lakes in
Rondônia State, Brazil. Accordingly, it was evident that Hg in lake se-
diments are both, positively and negatively related to oxides (typically
representing the composition of rocks, soils and sediments) which in-
fluence the transportation of Hg, and organic carbon which enables Hg-
organic complexation. The positive relationships are attributed to
geological and soil formations in the Amazon ecosystem and the ne-
gative relationships imply that Hg in lake sediments could also be ori-
ginating from anthropogenic sources, potentially from gold mining.
Further, it was also found that significantly high concentrations of Hg
are recent in lake sediments compared to the Hg concentrations in the
surrounding rocks. Given the significant decrease in gold mining over
the past years in the region, it can be concluded that historical inputs of
Hg from previous mining activities still contribute to the high Hg
concentrations in lake sediments.

Acknowledgements

Sprint Grant 2016/50327-4 funded jointly between FAPESP-
Foundation for Supporting Research in São Paulo State and Australian
Technology Network (ATN) of which Queensland University of
Technology (QUT), Brisbane, Australia, is a partner.

Table 1
Estimated conditional regression coefficients for Hg concentration in lake sediments (conditional Gaussian distribution).

Conditional density: Hg | oxides: organic carbon: sediment depth

Intercept 250.50

Parent Variable Oxides Organic Carbon Sediment Depth

Al2O3 Fe2O3 TiO2 MgO CaO Na2O K2O SiO2

Estimated coefficient 6.96 − 18.16 − 30.72 67.23 474.56 − 99.58 − 60.31 − 2.37 0.42 − 0.39

Note 1: Conditional density refers to the probability density function of ‘Hg’ given ‘oxides’, ‘organic carbon’ and ‘sediment depth’.
Note 2: High Hg concentrations can be expected where those variables with positive coefficients have relatively high values (e.g. higher the Al2O3 concentration,
higher the Hg concentrations), and low Hg concentrations can be expected where those variables with negative coefficients have relatively high values (e.g. higher
the Fe2O3 concentration, higher the Hg concentrations).

Fig. 3. Analysis of prediction performance of the Bayesian Network (BN)
model: (a) observed vs predicted; (b) predicted vs residuals.

Fig. 4. Predicted concentrations of Hg in sediments (average over depths of 0–5 cm, 5–10 cm, 10–15 cm and 15–20 cm) of lakes in Madeira River basin (Map data:
Google, DigitalGlobe).
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Appendix A. Supplementary material

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.ecoenv.2018.09.099.
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